3.29.59 \(\int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx\) [2859]

3.29.59.1 Optimal result
3.29.59.2 Mathematica [C] (verified)
3.29.59.3 Rubi [A] (verified)
3.29.59.4 Maple [A] (verified)
3.29.59.5 Fricas [C] (verification not implemented)
3.29.59.6 Sympy [F(-1)]
3.29.59.7 Maxima [F]
3.29.59.8 Giac [F]
3.29.59.9 Mupad [F(-1)]

3.29.59.1 Optimal result

Integrand size = 28, antiderivative size = 158 \[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=-\frac {15553 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}}{8750}-\frac {333}{875} \sqrt {1-2 x} (2+3 x)^{3/2} \sqrt {3+5 x}-\frac {3}{35} \sqrt {1-2 x} (2+3 x)^{5/2} \sqrt {3+5 x}-\frac {270248 \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{21875}-\frac {178879 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{43750 \sqrt {33}} \]

output
-270248/65625*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/ 
2)-178879/1443750*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33 
^(1/2)-333/875*(2+3*x)^(3/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)-3/35*(2+3*x)^(5/2 
)*(1-2*x)^(1/2)*(3+5*x)^(1/2)-15553/8750*(1-2*x)^(1/2)*(2+3*x)^(1/2)*(3+5* 
x)^(1/2)
 
3.29.59.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 3.84 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.62 \[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\frac {-165 \sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x} \left (25213+18990 x+6750 x^2\right )+5945456 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-6124335 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )}{1443750} \]

input
Integrate[(2 + 3*x)^(7/2)/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]
 
output
(-165*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(25213 + 18990*x + 6750*x^ 
2) + (5945456*I)*Sqrt[33]*EllipticE[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (6 
124335*I)*Sqrt[33]*EllipticF[I*ArcSinh[Sqrt[9 + 15*x]], -2/33])/1443750
 
3.29.59.3 Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.09, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {113, 27, 171, 25, 171, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(3 x+2)^{7/2}}{\sqrt {1-2 x} \sqrt {5 x+3}} \, dx\)

\(\Big \downarrow \) 113

\(\displaystyle -\frac {1}{35} \int -\frac {(3 x+2)^{3/2} (666 x+409)}{2 \sqrt {1-2 x} \sqrt {5 x+3}}dx-\frac {3}{35} \sqrt {1-2 x} \sqrt {5 x+3} (3 x+2)^{5/2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{70} \int \frac {(3 x+2)^{3/2} (666 x+409)}{\sqrt {1-2 x} \sqrt {5 x+3}}dx-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {1}{70} \left (-\frac {1}{25} \int -\frac {\sqrt {3 x+2} (46659 x+28775)}{\sqrt {1-2 x} \sqrt {5 x+3}}dx-\frac {666}{25} \sqrt {1-2 x} \sqrt {5 x+3} (3 x+2)^{3/2}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \int \frac {\sqrt {3 x+2} (46659 x+28775)}{\sqrt {1-2 x} \sqrt {5 x+3}}dx-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 171

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \left (-\frac {1}{15} \int -\frac {3 (1080992 x+684371)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {15553}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \left (\frac {1}{10} \int \frac {1080992 x+684371}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {15553}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \left (\frac {1}{10} \left (\frac {178879}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {1080992}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx\right )-\frac {15553}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \left (\frac {1}{10} \left (\frac {178879}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {1080992}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {15553}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {1}{70} \left (\frac {1}{25} \left (\frac {1}{10} \left (-\frac {357758 \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{5 \sqrt {33}}-\frac {1080992}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )-\frac {15553}{5} \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}\right )-\frac {666}{25} \sqrt {1-2 x} (3 x+2)^{3/2} \sqrt {5 x+3}\right )-\frac {3}{35} \sqrt {1-2 x} (3 x+2)^{5/2} \sqrt {5 x+3}\)

input
Int[(2 + 3*x)^(7/2)/(Sqrt[1 - 2*x]*Sqrt[3 + 5*x]),x]
 
output
(-3*Sqrt[1 - 2*x]*(2 + 3*x)^(5/2)*Sqrt[3 + 5*x])/35 + ((-666*Sqrt[1 - 2*x] 
*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/25 + ((-15553*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]* 
Sqrt[3 + 5*x])/5 + ((-1080992*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 
 - 2*x]], 35/33])/5 - (357758*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 3 
5/33])/(5*Sqrt[33]))/10)/25)/70
 

3.29.59.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 113
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[b*(a + b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1 
)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1))   Int[(a + b*x) 
^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m 
 - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m 
 + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] & 
& GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 171
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_)*((g_.) + (h_.)*(x_)), x_] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*(( 
e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p + 2)) 
  Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2 
) - h*(b*c*e*m + a*(d*e*(n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) 
+ h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] 
 && IntegersQ[2*m, 2*n, 2*p]
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.59.4 Maple [A] (verified)

Time = 1.37 (sec) , antiderivative size = 150, normalized size of antiderivative = 0.95

method result size
default \(-\frac {\sqrt {2+3 x}\, \sqrt {1-2 x}\, \sqrt {3+5 x}\, \left (524943 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-540496 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )+3037500 x^{5}+10874250 x^{4}+17188650 x^{3}+6097035 x^{2}-4356465 x -2269170\right )}{131250 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(150\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (-\frac {1899 x \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{875}-\frac {25213 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{8750}+\frac {684371 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{918750 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {540496 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{459375 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}-\frac {27 x^{2} \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}{35}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(228\)
risch \(\frac {\left (6750 x^{2}+18990 x +25213\right ) \left (-1+2 x \right ) \sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{8750 \sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \sqrt {1-2 x}}+\frac {\left (\frac {684371 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{962500 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {24568 \sqrt {66+110 x}\, \sqrt {10+15 x}\, \sqrt {-110 x +55}\, \left (\frac {E\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{15}-\frac {2 F\left (\frac {\sqrt {66+110 x}}{11}, \frac {i \sqrt {66}}{2}\right )}{3}\right )}{21875 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right ) \sqrt {\left (1-2 x \right ) \left (2+3 x \right ) \left (3+5 x \right )}}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(251\)

input
int((2+3*x)^(7/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/131250*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(3+5*x)^(1/2)*(524943*5^(1/2)*(2+3*x 
)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/3 
5*70^(1/2))-540496*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1 
/2)*EllipticE((10+15*x)^(1/2),1/35*70^(1/2))+3037500*x^5+10874250*x^4+1718 
8650*x^3+6097035*x^2-4356465*x-2269170)/(30*x^3+23*x^2-7*x-6)
 
3.29.59.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 59, normalized size of antiderivative = 0.37 \[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=-\frac {1}{8750} \, {\left (6750 \, x^{2} + 18990 \, x + 25213\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1} - \frac {18365287}{11812500} \, \sqrt {-30} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) + \frac {270248}{65625} \, \sqrt {-30} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) \]

input
integrate((2+3*x)^(7/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="fricas")
 
output
-1/8750*(6750*x^2 + 18990*x + 25213)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x 
 + 1) - 18365287/11812500*sqrt(-30)*weierstrassPInverse(1159/675, 38998/91 
125, x + 23/90) + 270248/65625*sqrt(-30)*weierstrassZeta(1159/675, 38998/9 
1125, weierstrassPInverse(1159/675, 38998/91125, x + 23/90))
 
3.29.59.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\text {Timed out} \]

input
integrate((2+3*x)**(7/2)/(1-2*x)**(1/2)/(3+5*x)**(1/2),x)
 
output
Timed out
 
3.29.59.7 Maxima [F]

\[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {7}{2}}}{\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(7/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="maxima")
 
output
integrate((3*x + 2)^(7/2)/(sqrt(5*x + 3)*sqrt(-2*x + 1)), x)
 
3.29.59.8 Giac [F]

\[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int { \frac {{\left (3 \, x + 2\right )}^{\frac {7}{2}}}{\sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((2+3*x)^(7/2)/(1-2*x)^(1/2)/(3+5*x)^(1/2),x, algorithm="giac")
 
output
integrate((3*x + 2)^(7/2)/(sqrt(5*x + 3)*sqrt(-2*x + 1)), x)
 
3.29.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(2+3 x)^{7/2}}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx=\int \frac {{\left (3\,x+2\right )}^{7/2}}{\sqrt {1-2\,x}\,\sqrt {5\,x+3}} \,d x \]

input
int((3*x + 2)^(7/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(1/2)),x)
 
output
int((3*x + 2)^(7/2)/((1 - 2*x)^(1/2)*(5*x + 3)^(1/2)), x)